Фаги усиливают бактериальную инфекцию

Фаги усиливают бактериальную инфекцию

На днях начал работу первый в России Биологический ресурсный центр исследования бактериофагов – вирусов, поражающих бактерии. Новая структура создана на базе компании «Микроген», входящей в холдинг «Нацимбио» Госкорпорации Ростех.

Центр станет своеобразной коллекцией, в которой уже насчитывается около 10 тыс. микроорганизмов.

 Это уникальный материал, на основе которого удастся создать новые препараты бактериофагов и в перспективе 5-7 лет разработать основу для перехода к персонализированной фаготерапии.

Разбираемся, в чем преимущества бактериофагов и смогут ли они стать эффективным средством борьбы с инфекциями, с которыми не могут справиться антибиотики.

Бактериофаги – «пожиратели» бактерий

На самом деле, бактериофаги – это вирусы. Но только не те вирусы, которые поражают человека или животных. Бактериофаги уничтожают исключительно бактерии, или точнее – пожирают их (от греческого phagos – «пожиратель»).

Эти миниатюрные (размером в среднем от 20 до 200 нанометров) враги бактерий очень распространены на нашей планете, найти их можно практически везде: в воде, глубоко под землей, в почве и даже в макроорганизмах.

Бактериофаги используют в научных исследованиях, но, конечно, их основное практическое применение – борьба с бактериями.

Каждый бактериофаг поражает только те бактерии, против которых направлен. Когда фаг замечает «свою» бактерию, он моментально прикрепляется к оболочке ее клетки, после чего вводит собственную нуклеиновую кислоту (геном) внутрь бактерии. Его цель – заставить бактериальную клетку «работать на себя», то есть начать в ней процесс своего размножения.

Фаги усиливают бактериальную инфекцию Бактериофаговая активность. Маленькие пятна – область лизиса бактерий, вызванного фагами

Вскоре внутри бактерии формируются новые бактериофаги, и начинается процесс лизиса – распада бактериальной клетки и выход зрелых фагов.

Таким образом, на свет появляются сотни новых бактериофагов, готовых к нападению. «Литический цикл» вновь повторяется.

При всей своей кажущейся агрессивности, этот процесс абсолютно безвреден и не причиняет никаких побочных эффектов остальной микрофлоре организма.

Бактериофаги – далеко не новый биологический вид, а древнейшая группа вирусов. Ученые приступили к их изучению задолго до появления всем известных антибиотиков. Первые научные сообщения о бактериофагах появились еще в 1920-х годах. Многие тогда считали фаготерапию ключом к уничтожению бактериальных инфекций.

Кстати, одним из основоположников фаготерапии стал грузинский микробиолог Георгий Элиава. В 1923 году он основал бактериологический институт в Тбилиси – первый в мире научно-исследовательский центр бактериофагологии. Через некоторое время к нему присоединился и сам первооткрыватель бактериофагов – француз Феликс Д’Эрелль.

Кстати, именно он и придумал само название «бактериофаг».

В 1940 году бактериофагами заинтересовались за океаном – американские фармацевтические компании пытаются коммерциализировать идею фаготерапии. Но «фаготерапевтическому буму» вскоре приходит конец.

Событие, которое отложило исследование фаготерапии на долгие годы – начало промышленного производства пенициллина.

Несмотря на то что Александр Флеминг открыл пенициллин еще в 1928 году, первое время его идея не получила широкого применения из-за отсутствия возможности химического производства антибиотика. И только в начале 1940-х годов в Англии, США и СССР организуется промышленный выпуск пенициллина.

Бактерии vs. Человечество: глобальное сопротивление

Случайное открытие Флеминга ознаменовало начало новой эры в медицине. Человечество смогло побороть множество смертельных бактериальных заболеваний, которые на протяжении тысячелетий оставались неизлечимыми.

Но наряду с возможностями антибиотиков, Флеминг обнаружил и другое – при недостаточном количестве пенициллина или если его действие было непродолжительным, бактерии приобретали устойчивость к антибиотику.

Флеминг об этом рассказывал в своих выступлениях по всему миру и не раз предупреждал, что не стоит использовать пенициллин, пока заболевание не будет диагностировано, а при необходимости применения антибиотика, его нельзя использовать в течение короткого времени и в совсем малых количествах. К сожалению, это предостережение не помогло.

Уже к 1945 году пенициллин стал доступен повсеместно, активно создавались и другие антибиотики. На протяжении последующих десятилетий они применялись практически бесконтрольно. К примеру, одной из проблем стало самолечение антибиотиками среди населения.

Причем при самостоятельном выборе антибиотика часто предпочтение отдавалось именно препаратам широкого спектра действия. Антибиотики стали также широко применяться в сельском хозяйстве – до 80% всех антибиотиков в мире используют для лечения скота.

Все это ускорило темпы формирования «антибиотикорезистентности» (от английского resist – «сопротивляться») и привело к тому, что многие инфекционные заболевания снова стали неизлечимы.

Фаги усиливают бактериальную инфекцию Легионеллы – патогенные грамотрицательные бактерии

«Все хотят жить, в том числе и микробы, – рассказывает РИА «Новый день» доктор медицинских наук Тамара Перепанова. – Они развивают сопротивляемость. И эта борьба складывается в пользу микроорганизмов.

Они вырабатывают новые штаммы быстрее, чем все фармакологии мира разрабатывают новые препараты. И вот уже антибиотик неэффективен».

К слову, самый первый антибиотик – пенициллин – практически бесполезен сегодня: у бактерий к нему развилась почти полная устойчивость.

В 2017 году Всемирная организация здравоохранения (ВОЗ) впервые опубликовала список устойчивых к действию антибиотиков «приоритетных патогенов» – 12 видов бактерий, представляющих наибольшую угрозу для здоровья человека.

В их числе – Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacteriaceae, Enterococcus faecium, Staphylococcus aureus, Helicobacter pylori, Campylobacter spp., Salmonellae, Neisseria gonorrhoeae, Streptococcus pneumoniae, Haemophilus influenzae, Shigella.

За всеми этими названиями – очень серьезные заболевания: сепсис, менингит, пневмония, брюшной тиф, дизентерия и другие.

По данным ВОЗ практически все существующие патогенные для человека бактерии приобретут устойчивость к антибиотикам уже через 10-20 лет. По прогнозам, к 2050 году число жертв бактериальных инфекций возрастет до 10 млн в год.

Кстати, с уверенностью можно констатировать, что для любого жителя нашей страны вероятность подцепить бактериальную инфекцию, устойчивую ко всем основным антибиотикам, сейчас гораздо выше, чем заразиться вирусом из Китая.

Антибиотики и бактериофаги – оружие против одного врага

Сегодня существующие антибиотики в большинстве случаев все еще работают. Но ученые уже назвали борьбу с бактериями «главным вызовом времени». Проблема антимикробной резистентности рассматривается на глобальном уровне, и мировое научное сообщество активно ищет пути ее решения.

Конечно, первый выход из ситуации – это создание новых видов антибиотиков. Но на разработку одного препарата, его клинические испытания и внедрение в массовое производство уходит в среднем 10 лет.

Второй явный минус – это стоимость: создание нового антибиотика обходится в миллиарды долларов.

Поэтому ученые все чаще стали вспоминать «старую» альтернативу антибиотикам – бактериофаги. Как отмечают эксперты отрасли, создание бактериофага обходится в десятки раз дешевле, чем антибиотика. Но главное преимущество фагов – не в стоимости, а в их способности изменяться вслед за бактерией. Кроме того, бактериофаги не имеют побочных эффектов и не нарушают естественную флору организма.

Фаги усиливают бактериальную инфекцию Структура типичного миовируса бактериофага

Тем не менее антибиотики никуда не исчезнут с полок аптек и из арсенала врачей. Как отмечают специалисты, антибиотики и бактериофаги – оружие против одного врага. Только действуют они по-разному.

Антибиотики можно сравнить с тяжелой артиллерией. Они необходимы, когда действовать нужно быстро, и возможные побочные эффекты меркнут перед критическим состоянием пациента.

Бактериофаги – это снайпер, который прицельно уничтожает только один вид бактерий.

Действительно, плюс антибиотиков – отсутствие узкой специализации. Один антибиотик способен лечить довольно широкий круг бактериальных инфекций. Но, как уже отмечалось выше, не обходится без побочных эффектов – от антибиотиков страдают не только инфекционные бактерии, но и полезные бактерии нашей микрофлоры. Поэтому длительное употребление антибиотиков нередко вызывает дисбактериоз.

Бактериофаги обладают узкой специализацией, поэтому для каждой бактерии нужно выделить свой терапевтический фаг. Положительная сторона такой специализации – более «прицельный» удар: ликвидируется только инфекционная бактерия, а полезные не страдают.

Фаготерапия по-русски

Эксперты отмечают, что производство бактериофагов – весьма перспективное направление в фармацевтической промышленности. Кстати, наша страна в производстве бактериофагов исторически занимает ведущие позиции.

Уже в годы Великой Отечественной войны применялась фаготерапия. Особое внимание уделялось разработке бактериофагов против кишечных инфекций – холеры, брюшного тифа, дизентерии и сальмонеллеза.

Всего в военное время для фронта было изготовлено более 200 тыс. литров бактериофагов.

Сегодня в нашей стране развитие производства лекарственных препаратов на основе бактериофагов входит в Стратегию предупреждения распространения антимикробной резистентности в Российской Федерации до 2030 года, принятую Правительством РФ.

Единственный в стране производитель препаратов бактериофагов – компания «Микроген» холдинга «Нацимбио» Госкорпорации Ростех. В период с 2017 по 2019 год продажи бактериофагов «Микрогена» выросли более чем на 25% в денежном выражении.

 

Фаги усиливают бактериальную инфекцию

Компанией разработаны и выпускаются 19 наименований лекарств на основе бактериофагов против множества известных возбудителей инфекционных заболеваний: дизентерии, брюшного тифа, сальмонеллеза, гнойно-септических и других. Кроме того, разработаны комбинированные препараты, например «Секстафаг» (Пиобактериофаг поливалентный).

Он обладает способностью справиться с бактериями стафилококков, стрептококков (в том числе энтерококков), протея, клебсиелл пневмонии, синегнойной и кишечной палочек.

Данный препарат отличается высокой степенью очистки от бактериальных метаболитов, что позволяет успешно использовать его для лечения новорожденных и детей раннего возраста, а также применять для беременных.

В рамках Стратегии по борьбе с антимикробной резистентностью ученые НПО «Микроген» проводят множество исследований. В настоящий момент предприятие приступило к созданию первого в России Биологического ресурсного центра для углубленного изучения бактериофагов.

«Задача Биологического ресурсного центра – объединить микробные производственные коллекции, собранные на территории России. На данный момент это более 10 тыс. штаммов.

В коллекцию также входят бактериофаги для терапевтических целей.

Это уникальный материал, представляющий собой государственную ценность, на его основе удастся создать новые виды лекарств», – прокомментировал исполнительный директор Госкорпорации Ростех Олег Евтушенко.

Но, пожалуй, самой амбициозной целью нового центра является создание основы для перехода к персонализированной фаготерапии в ближайшие 5-7 лет. Персонально подобранный «коктейль» из бактериофагов может спасти жизнь пациентам, которым уже не помогают антибиотики.

Успехи российских и зарубежных ученых вселяют надежду на то, что проблема антимикробной резистентности в скором времени может быть преодолена.

Тем временем каждый из нас в этой борьбе с «супербактериями» может внести свой маленький вклад – соблюдать правила, которые помогут уберечься от вирусов и бактерий, остановить появление новых опасных инфекций.

Все просто: не забывать о гигиене, вести здоровый образ жизни, вовремя обращаться к врачам и ограничить использование антибиотиков.

Бактериофаги в ассортименте аптеки

Если имеется крупная колония бактерий, где своих жертв найдут и следующие поколения фагов, то уничтожение бактерий литическими (убивающими, дословно — растворяющими) фагами идет быстро и непрерывно.

Если потенциальных жертв мало или внешние условия не слишком подходят для эффективного размножения фагов, то преимущество получают фаги с лизогенным циклом развития.

Читайте также:  Куда из аптек пропали лекарства

В этом случае после внедрения внутрь бактерии ДНК фага не сразу запускает механизм инфекции, а до поры до времени существует внутри клетки в пассивном состоянии, часто внедряясь в бактериальный геном.

В таком состоянии профага вирус может существовать долго, проходя вместе с хромосомой бактерии циклы деления клетки. И лишь, когда бактерия попадает в благоприятную для размножения среду, активируется литический цикл инфекции.

При этом, когда ДНК фага освобождается из бактериальной хромосомы, часто захватываются и соседние участки бактериального генома, а их содержимое в дальнейшем может перенестись в следующую бактерию, которую заразит бактериофаг. Этот процесс (трансдукция генов) считается важнейшим средством переноса информации между прокариотами — организмами без клеточных ядер.

ПРИМЕНЕНИЕ БАКТЕРИОФАГОВ В МЕДИЦИНЕ

Исторически сложилось, что СССР занимал лидирующие позиции в области производства и применения лечебно-профилактических бактериофагов.

Применение бактериофагов при лечении инфекционных заболеваний началось почти сразу после открытия самих бактериофагов, однако широкие испытания этих противобактериальных средств начали проводиться в СССР только в конце 1930-х гг.

В результате была доказана эффективность препаратов бактериофагов как профилактического средства при борьбе с эпидемиями дизентерии и холеры, а использование их при лечении ран и гнойно-воспалительных процессов показало их потенциал как альтернативы антибиотикам.

Однако результаты исследований тех времен были зачастую противоречивы: иногда фаги сразу подавляли развитие инфекционных процессов, но иногда оказывались бесполезными.

Специалисты сразу поняли, в чем причина: лечение было успешным лишь тогда, когда использовались фаги, способные инфицировать именно тот бактериальный штамм, который и вызвал заболевание.

Поэтому при возникновении эпидемии требовалось выделить инфекционный агент, проверить на нем имеющиеся фаговые препараты и запустить в производство в качестве препарата наиболее эффективный бактериофаг.

Столетняя история фаготерапии бактериальных инфекций такова, что основные клинические испытания были проведены задолго до разработки надежной экспериментальной модели инфекционной патологии на лабораторных животных и внедрения в медицинскую практику для вновь регистрируемых лекарственных средств высоких стандартов двойного слепого плацебо-контролируемого исследование.

С появлением антибиотиков интерес к фагам был утрачен, но после появления антибиотикоустойчивых штаммов бактерий в разных странах начали разрабатывать фаговые препараты и вновь проводить их испытания. Этому способствует и развитие новых представлений в конце ХХ — начале ХХI в.

как о молекулярной биологии, так и об экологических взаимоотношениях бактериофагов и их хозяев.

Сейчас бактериофаги в медицинской практике применяется в диагностике, лечении и профилактике инфекционных заболеваний.

Фагодиагностика (фагоиндикация) – выделение бактериофагов из организма больного и объектов внешней среды (что косвенно свидетельствует о наличии в материале соответствующих бактерий). В процессе диагностики важно проводить фагоидентификацию, которая включает в себя:

— фагодифференцировку — установление вида (идентификация) бактерий по их чувствительности к известному фагу; — фаготипирование – установление типа — внутривидовое типирование бактерий по их чувствительности к типовым бактериофагам (важно для эпидемиологического анализа заболевания – установление источника и путей распространения заболевания).

Фаготерапия – применение бактериофагов с целью лечения инфекционных заболеваний (например, пиобактериофаг, дизентирийный и синегнойный бактериофаги).

Фагопрофилактика – применение бактериофагов с целью предупреждения заболеваний в эпидемическом очаге (например, дизентерийный, сальмонеллезный и стафилококковый бактериофаги).

В настоящее время фаги применяются для экстренной профилактики брюшного тифа и дизентерии.

Под экстренной профилактикой понимается комплекс мероприятий для предотвращения развития болезни до и/или непосредственно после процесса инфицирования.

Достоинств у бактериофагов как потенциальных лекарств множество, но и недостатков не мало. К несомненным достоинствам относится, во-первых, их большое количество, на фоне этого всегда можно подобрать подходящий бактериофаг.

Во‑вторых, бактериофаги строго специфичны, то есть они уничтожают только определенный вид микробов, не угнетая при этом нормальную микрофлору человека. В-третьих, когда бактериофаг находит бактерию, которую должен уничтожить, он в процессе своего жизненного цикла начинает размножаться.

Таким образом, не столь острым становится вопрос дозировки. В-четвертых, бактериофаги не вызывают побочных эффектов.

Все случаи аллергических реакций при использовании терапевтических бактериофагов были вызваны либо примесями, от которых препарат был недостаточно очищен, либо токсинами, выделяющимися при массовой гибели бактерий.

Проблемы применения бактериофагов проистекают из их достоинств. Прежде всего высокая специфичность бактериофагов требует точной диагностики патогенного микроба вплоть до штамма.

Например, препарат, сделанный против определенного набора штаммов и прекрасно лечащий стрептококковую ангину в Смоленске, может оказаться бессильным против по всем признакам такой же ангины в Кемерово, так как болезнь могут вызывать разные штаммы бактерий. Фагодиагностика с использованием быстрых методов типирования внедряется медленно из-за дороговизны аппаратуры.

В идеальных условиях терапия бактериофагами должна проводиться с использованием принципов персонализированной медицины, к чему современная отечественная медицина практически не готова.

Другой важный недостаток фагов — их биологическая природа. Кроме того, что бактериофаги для поддержания жизнеспособности требуют особых условий хранения и транспортировки, такой метод лечения открывает простор для множества спекуляций на тему «посторонней ДНК в человеке».

И хотя известно, что бактериофаг в принципе не может заразить человеческую клетку и внедрить в нее свою ДНК, поменять общественное мнение непросто. Из биологической природы и довольно большого, по сравнению с низкомолекулярными лекарствами (теми же антибиотиками), размера вытекает третье ограничение — проблема доставки бактериофага в организм.

Если микробная инфекция развивается там, куда бактериофаг можно приложить напрямую в виде капель, спрея или клизмы, — на коже, открытых ранах, ожогах, слизистых оболочках носоглотки, ушей, глаз, толстого кишечника — то проблем не возникает. Но если заражение происходит во внутренних органах, ситуация сложнее.

Случаи успешного излечения инфекций почек или селезенки при обычном пероральном приеме препарата бактериофага известны. Но сам механизм проникновения относительно крупных (100 нм) фаговых частиц из желудка в кровоток и во внутренние органы изучен плохо и сильно разнится от пациента к пациенту.

Бактериофаги бессильны и против тех микробов, которые развиваются внутри клеток, например, возбудителей туберкулеза и проказы. Через стенку человеческой клетки бактериофаг пробраться не может.

Сравнительные возможности терапии фагами и антибиотиками представлены в таблице ниже.

Лекарственные средства на основе бактериофагов (ч. 1)

Преферанская Нина ГермановнаДоцент кафедры фармакологии фармацевтического факультета Первого МГМУ им. И.М. Сеченова, к.фарм.н.

Это увеличивает риск возврата человечества к далекому прошлому, когда были широко распространены неизлечимые инфекции и свирепствовали пандемии, т.к. не было эффективных противомикробных химиотерапевтических средств. Обнаруженная возможность полностью секвенировать (лат.

sequentum — последовательность) микробные геномы и определить молекулярно–генетические основы их вирулентности и патогенности открывает новые пути борьбы с инфекционными заболеваниями. Одним из них является возможность терапевтического использования таких лекарств, как бактериофаги (греч.

baktêria — палочка, phagos — пожиратель).

Бактериофаги — это крошечные вирусы, пожирающие бактериальные клетки, были открыты в 1915 г. Название «бактериофаг» ввел франко–канадский микробиолог, сотрудник Института Пастера в Париже Феликс д’Эрель, который использовал суффикс «фаг» не в его прямом смысле, а как составную часть слова, соответствующую по значению словам «поедающий» или «пожирающий».

Д’Эрель охарактеризовал бактериофаги как вирусы, которые размножаются в бактериях и уничтожают их. Он разработал подробности борьбы с инфекциями различными фагами разнообразных бактерий–хозяев в разных условиях окружающей среды.

В своих работах он всегда объединял природные феномены и лабораторные данные для лучшего понимания иммунитета и естественного избавления от инфекционных заболеваний.

Бактериофаги — это специфические субмикроскопические агенты, являющиеся внутриклеточными паразитами определенных патогенных бактерий, которые их атакуют и убивают. В странах Ближнего Востока и в Индии фаговая терапия и санитарные мероприятия были главными средствами в арсенале борьбы с крупными вспышками инфекционных заболеваний.

Много внимания уделялось изучению фагов, активных против дизентерийной, брюшнотифозной, дифтерийной палочек, стафилококков и стрептококков, чтобы использовать их для профилактики и лечения тех инфекционных заболеваний, которые они вызывают.

Специфические проблемы включают инфекции, вызванные псевдомонадами, которые трудно поддаются лечению, а также Clostridium difficile, вызывающие серьезные диареи и псевдомембранозный колит.

В ответ на большие потребности в высококачественных фаговых препаратах в Париже создается компания по их производству, в Грузии организовывается Международный институт бактериофагов. В тот период времени фаговая терапия получила широкое применение, однако с открытием антибиотиков в 1940-х гг. о ней стали забывать и мало использовать.

В XXI в., благодаря новейшим современным методам исследования (электронная микроскопия, меченые атомы), ученые определили структуру фагов, их химический состав, изучили особенности их размножения. Разные фаги отличаются друг от друга не только по форме, величине и сложности своей организации, но и по химическому составу.

Фаговая частица оказалась сложноорганизованной и содержит основные химические соединения, свойственные всем живым организмам, — нуклеиновые кислоты и белок. Важно отметить, что фаги, как и другие вирусы, содержат только один тип нуклеиновой кислоты — дезоксирибонуклеиновую (ДНК) или рибонуклеиновую (РНК).

Этим свойством вирусы отличаются от микроорганизмов, которые содержат в клетках оба типа нуклеиновых кислот. Нуклеиновая кислота находится в головке, внутри этой головки обнаружено также небольшое количество белка (около 3%).

Они не обладают собственным обменом веществ и являются абсолютными паразитами, живущими полностью за счет клетки–хозяина.

Подобно другим живым существам, фаги способны изменять свои свойства. При попадании в клетку фаги вызывают каталитически протекающие процессы образования активного фага, способного разрушить микробную клетку.

Фаговая частица является продуктом жизнедеятельности микробной клетки, поэтому некоторые ученые рассматривают фаги как фермент эндогенного происхождения. Размножение фага в клетке происходит приблизительно так же, как образование активного фермента из его неактивного предшественника — профермента.

Но теорию, что фаги — это ферменты, чаще считают ошибочной. Большинство ученых приходят к единому мнению, что фаги — это особые мельчайшие формы живых существ.

С самого начала одним из главных направлений практического применения фагов была идентификация бактерий путем процесса, называемого «фаготипирование» — идентификация штаммов микробов с помощью определения спектра чувствительности к специфическому набору фагов.

Эта методика обладает преимуществом ввиду высокой специфичности многих фагов в отношении их хозяев и по–прежнему широко используется во всем мире.

Были сообщения о многочисленных успехах ее применения при ряде заболеваний, включая дизентерию, брюшной тиф, лихорадку, холеру, пиогенные инфекции и инфекции мочевых путей. Фаги непосредственно наносили на место поражения, давали внутрь либо применяли в виде аэрозолей или клизм.

Их также вводили в виде инъекций: подкожно, внутримышечно, интрадуоденально, внутрибрюшинно, внутрь легких, в сонную артерию и перикард. Каждый фаговый препарат специфичен, его можно успешно применять для идентификации и для очистки от микробной культуры.

Удалось доказать, что белок оболочки фага отличается от белка оболочки отростка и от белка базальной пластинки и ее нитевидных образований, что говорит о сложности структуры фаговой частицы. Адсорбция фага на клетке — реакция весьма специфичная. Фаги, имеющие отростки, прикрепляются к микробной стенке свободным концом отростка.

Читайте также:  Днк рака в крови ухудшает прогноз излечения

Нитевидные фаги, а также фаги, не имеющие отростков, адсорбируются не на микробной стенке, а на нитевидных структурах, окружающих стенку. На конце фагового отростка имеется особый фермент типа лизоцима. После адсорбции фага под влиянием этого фермента происходит растворение стенки микробной клетки и содержимое головки фага, а именно нуклеиновая кислота перекачивается в микробную клетку.

Этим завершается второй этап процесса размножения фага.

Другие структуры фаговой частицы, такие как оболочка головки, отросток и его субструктуры, внутрь инфицированной фагом клетки не попадают. Их роль заключается в обеспечении сохранности фаговой частицы, находящейся вне клетки, и в содействии проникновению фаговой нуклеиновой кислоты в клетку.

После проникновения нуклеиновой кислоты фага в клетку начинается сложный процесс внутриклеточного размножения фага. Под влиянием нуклеиновой кислоты фага резко изменяется весь обмен микробной клетки.

Основные процессы, протекающие в инфицированной клетке, направлены на образование новых фаговых частиц.

Инъецированная ДНК (РНК) подавляет синтезирующие механизмы клетки, заставляя ее синтезировать нуклеиновые кислоты и белки бактериофага. Из образовавшихся в разных частях клетки в разное время фаговая нуклеиновая кислота и белок формируют новые фаговые частицы.

Вначале формируются отдельно головки и отростки, которые затем объединяются в зрелые фаговые частицы. К этому времени внутри клетки образуется особый литический фермент, который вызывает лизис клетки изнутри. Клетка распадается, и новые зрелые частицы фага выходят наружу.

Количество новых фаговых частиц, образуемых одной клеткой при фаговой инфекции, называют выходом фага или его урожайностью. Выход фага зависит от свойств данного фага и не зависит от клетки-хозяина и ее размеров.

Одни фаги отличаются очень низким выходом (5–50 частиц на клетку), у других выход значительно выше (от 1000 до 2500). Особенно высоким выходом отличаются мелкие РНК-фаги (свыше 20 000 частиц на клетку).

Если большое количество бактериальных клеток смешать с небольшим количеством фаговых частиц, то процесс размножения фагов проходит в несколько циклов. Вначале инфицируется часть клеток. Первое потомство фага инфицирует оставшиеся клетки и происходит второй цикл, за ним может следовать третий и т.д.

, пока не будут лизированы все чувствительные к данному фагу клетки. Среди фагов встречаются такие, размножение которых возможно лишь при наличии в среде определенных кофакторов. Одни из этих веществ, как уже указывалось, необходимы для адсорбции фага; другие – для внутриклеточного размножения фага.

Несомненно, что абсолютное большинство фагов вызывают при размножении лизис клетки и ее гибель. Размножаясь, фаги самостоятельно регулируют свою численность (увеличивая или уменьшая ее), поскольку размножаются только до тех пор, пока имеются чувствительные бактерии, а затем постепенно элиминируются из организма.

Все фаги обладают антигенными свойствами. По антигенным свойствам фаг резко отличается от чувствительных к нему микроорганизмов. Важнейшей особенностью является размножение фага, это может происходить только в живых клетках, находящихся в стадии роста.

В мертвых клетках, а также в продуктах клеточного обмена размножение фага не происходит. По характеру взаимодействия с микробной клеткой различают вирулентные и умеренные бактериофаги. Время с момента инфицирования клетки фагом до лизиса клетки называется латентным или скрытым периодом.

Продолжительность этого периода различна для разных типов фага, зависит от окружающей температуры, состава среды и других факторов. Латентный период для фагов, специфичных одному виду бактерий, равен от 15 до 40 мин., а для других он может достигать 5 часов и более.

У актинофагов латентный период может быть еще продолжительнее. При низкой температуре латентный период значительно увеличивается.

По признаку специфичности выделяют моновалентные, которые лизируют культуры только одного вида бактерий, их называют «монофаги». Для обозначения фагов, которые «пожирают» актиномицеты, применяется термин «актинофаги», микобактерии — «микофаги», кишечную палочку — «колифаги» и т.д.

Наиболее высокой специфичностью отличаются типовые бактериофаги, способные вызывать лизис только определенных типов бактериальной культуры внутри данного вида бактерий. Поливалентные бактериофаги пожирают культуру одного семейства или рода бактерий и обозначаются как «полифаги».

В нашей стране основными производителями бактериофагов являются НПО «Микроген», «Иммунопрепарат» (г. Уфа) и ООО НПЦ «МикроМир».

В отношении бактериофагов описано мало побочных эффектов. Фаговая терапия имеет ряд преимуществ:

  • высокая специфичность;
  • предотвращение осложнения заболеваний;
  • стимулирующее влияние на гуморальное и клеточное звено иммунитета;
  • применение как для лечения, так и для профилактики заболеваний, не подавляя нормальную микрофлору.

Преферанская Н.Г.

23.03.2016

Бактериальная и вирусная инфекции: в чем отличие?

Если обратиться к статистике, то инфекции – самая частая причина обращения за медицинской помощью. Спровоцировать их могут различные патогены: вирусы, бактерии, грибки и др. Вирусы и бактерии могут стать причиной клинически схожих инфекций, но ситуации требуют разного лечения. Чем бактериальная и вирусная инфекция отличаются?

Основы микробиологии

Бактерии – одноклеточные микроорганизмы, поражающие разнообразием. Они имеют множество форм и особенностей, некоторые из них способны выживать в немыслимых условиях.

Человеческий микробиом насчитывает сотни видов бактерий и каждый выполняет определенные функции, например, сдерживают рост патогенных микроорганизмов, поддерживают обменные процессы и многое другое. Известно, что лишь 1% бактерий вызывают болезни.

Вирусы – еще меньше чем бактерии, для нормальной жизнедеятельности нуждаются в клетках хозяина, где они могут жить и развиваться. Некоторые вирусы могут уничтожать клетки, где они развиваются.

Способы передачи

В путях передачи инфекций много общего. Основной путь передачи — от человека к человеку при близком контакте, например, при поцелуях.

Контакт с биологическими жидкостями человека, например, во время полового акта, при кашле и чихании.

Так передаются не только вирусные инфекции, например, ВИЧ, ОРВИ и новая коронавирусная инфекция, но и бактериальные.

Некоторые вирусы и бактерии передаются при соприкосновении с зараженными поверхностями, где вирусы и бактерии живут в биологических средах. Еще один возможный путь передачи — при укусах животных и насекомых. 

Клиническая картина

Вирусы и бактерии вызывают схожие болезни по симптомам: лихорадка, насморк, кашель, головная боль, слабость и снижение работоспособности. Но при детальном рассмотрении и изучении найдется и масса отличий, которые заметит только врач.

Вирусные инфекции распространены в большей степени, поэтому, при появлении симптомов, часто предполагают именно ее. Дифференцировать одно от другого помогают следующие отличия и критерии:

  • Инкубационный период у вирусов более короткий, в сравнении с бактериями. Например, у бактериальных инфекций – симптомы появляются спустя 7-10-14 дней после заражения, а иногда и больше. Вирусные инфекции проявляются через 1-5 дней после заражения.
  • Клиническая картина вирусных инфекций более четкая, все характерные симптомы проявляются буквально сразу или между их появлением короткий промежуток времени. Если говорить о бактериальной инфекции, то они развиваются медленнее, но с полным набором симптомов.

Вирусные инфекции могут поражать здорового человека, а вот бактериальные развиваются на фоне ослабленного иммунитета или же являются осложнением перенесенного заболевания.

Конечно, главное отличие – способы и методы специфического лечения. Антибиотики никак не действуют на вирусы, а противовирусные на бактерии. 

Особенности диагностики

В медицине существует такое понятие, как дифференциальный диагноз – методы диагностики, которые помогут отличить одно заболевание от другого со схожей клинической картиной. Бактериальные и вирусные инфекции способны вызывать респираторные заболевания, и чтобы определить причину, проводят дифференциальный диагноз – анализ симптомов.

Например, выделения из носа при вирусных инфекциях жидкие, прозрачные, часто носят серозный характер. А вот при бактериальных – густые, могут иметь желтый или зеленый оттенок, что говорит о наличии гнойного процесса.

Естественной реакцией организма на проникновение вируса или бактерии является повышение температуры тела. При вирусной инфекции температура повышается резко и быстро,может держаться несколько дней. При бактериальной инфекции — постепенно и начало болезни сложно проследить.

При вирусных инфекциях сложно определить область поражения. Пациенты отмечают, что болит сразу все: горло, грудь, мышцы, голова. Однако при бактериальной инфекции легко определить область поражения: болит горло при ангине, боль в груди при бронхите, боль при мочеиспускании при циститах и др.

Длительность болезни также варьируется. Например, при вирусной инфекции улучшение наступает на 5-7 день болезни, а вот бактериальные инфекции протекают длительнее.

Особенности диагностики

В большинстве случаев, поставить предварительный диагноз удается на основе жалоб, внешнего и инструментального осмотра. Некоторые вирусные и бактериальные инфекции имеют весьма специфичные симптомы. При постановке диагноза учитывают еще и данные об эпидемиологической обстановке.

Но все же чаще при бактериальных инфекциях требуются дополнительные методы обследования, в том числе и лабораторные. В соответствии с этим, врач обязательно назначает следующие анализы:

  • общий анализ крови;
  • изучение слизи, выделяемой мокроты, других выделений и мазков;
  • анализ мочи, стула;
  • соскоб кожи;
  • изучение спинномозговой жидкости при тяжелом течении болезни.

При бактериальных инфекциях такие исследования проводятся с целью определения вида возбудителя, а также его антибиотикочувствительности.

Особенности лечения

Вирусные и бактериальные инфекции – совершенно разные диагнозы, имеющие особенности клинического течения, а также лечения. И, в случае ошибки при назначении лечения, повышается вероятность осложнений, развития основного заболевания. Иногда это представляет угрозу для здоровья и жизни.

Лечение бактериальных инфекций

Антибиотики – группа лекарств, назначаемых исключительно при лечении бактериальных инфекций. Существует разные виды антибиотиков, которые направленно действуют на бактерии определенного класса или же широкого спектра.

При формировании острых заболеваний с серьезным и быстрым течением могут назначаться антибиотики широкого спектра действия, а после, когда результаты по определению антибиотикочувствительности дадут результат, могут назначаться узкоспециализированные лекарства.

Неконтролируемый, необоснованный прием антибиотиков, когда пациент бросает их пить раньше срока, это может привести к формированию антибиотикоустойчивой флоры и в дальнейшем лечение окажется неэффективным.

Лечение вирусных инфекций

Для многих вирусных инфекций нет специфического лечения. Обычно разрабатывается симптоматическое, направленное на устранение симптомов, снижения температуры. Но все же лечение определяется конкретным вирусом и болезнью, которое он спровоцировал.

  • При вирусных инфекциях врач назначает противовирусные препараты, которые подавляют жизненный цикл некоторых вирусов.
  • Ну и главное, стоит помнить, что некоторые серьезные бактериальные и вирусные инфекции можно предотвратить при помощи вакцинации.
Читайте также:  Импланты груди приводят к двойному раку

Чувствительность микробиоты кишечника к бактериофагам и пробиотикам у детей с заболеваниями органов пищеварения | #06/11 | «Лечащий врач» – профессиональное медицинское издание для врачей. Научные статьи

В клинической практике педиатры и гастроэнтерологи для коррекции дисбактериоза всe чаще используют перспективные штаммы микробов в составе пробиотических препаратов [7, 8]. Штаммы должны быть типичными для данной возрастной группы детей, они должны сохранять длительную жизнеспособность при хранении и в процессе продвижения по желудочно-кишечному тракту. Одним из важнейших их свойств должна быть способность к адгезии на поверхности эпителиоцитов кишечника, что позволяет им колонизировать желудочно-кишечный тракт. Штаммы должны обладать высокой антагонистической активностью по отношению к патогенным организмам, обладать иммуномодулирующими свойствами [9]. При применении такой пробиотик не должен вызывать побочных эффектов и нарушений со стороны желудочно-кишечного тракта.

В современных условиях при широком арсенале пробиотиков чаще используются те препараты, которые рекомендованы хорошо обеспеченной рекламой от фирм-производителей или поставщиков.

Долговременное использование одних и тех же пробиотиков и бактериофагов ведeт к изменению чувствительности условно-патогенных микроорганизмов [10, 11].

Отслеживание еe чувствительности в детской популяции является важной задачей клинической практики.

Цель исследования. Определить лабораторную чувствительность или резистентность микрофлоры кишечника у детей с гастроэнтерологической патологией и синдромом дисбактериоза к препаратам, назначаемым для его коррекции, прежде всего к антимикробным средствам, а также к бактериофагам и пробиотикам.

Материалы и методы. Под наблюдением находилось 65 детей в возрасте от 3 месяцев до 10 лет, из них от 3 месяцев до 3 лет — 10 детей, от 3 до 6 лет — 25 и 7–10 лет — 30. В младшей возрастной группе были больные с глистно-протозойной инвазией (15) и кожно-интестинальной аллергией (20).

У детей 7–10 лет основным диагнозом был хронический гастродуоденит (ХГД) (поверхностный тип — у 20 больных, эрозивный — у 10). У всех детей с ХГД в течение последнего полугодия определялась Нр(+)-ассоциация, по поводу чего проводилась тройная антихеликобактерная терапия (Гастрозол, Амоксициллин, Клацид).

На фоне тройной терапии больные получали пробиотическую поддержку (Бифиформ или Линекс).

В комплекс обследования включались оценка клинико-анамнестических данных, показателей клинического минимума (анализ крови, мочи, копрограммы), УЗИ органов брюшной полости, фиброгастродуоденоскопия (по показаниям).

Всем больным с кожно-интестинальной аллергией проводилось биорезонансное тестирование на сенсибилизацию к пищевым и ингаляционным аллергенам.

Исследование кала на лямблии проводилось методом эфирно-формалинового обогащения, микробиологический анализ кала на дисбактериоз кишечника с определением чувствительности выделенной флоры к четырем антимикробным препаратам (Метронидазол, Макмирор, Эрсефурил, Интетрикс), к шести видам бактериофагов (БФ) и 9 пробиотическим препаратам. Чувствительность или резистентность кишечной микрофлоры определялась к следующим фаголизатам: клебсиеллeзный поливалентный БФ, интести-БФ, колипротейный БФ (Н. Новгород), комплексный ПИО-БФ (Н. Новгород), ПИО-ПОЛИ БФ (Уфа) и Секстафаг (Пермь). Оценивалась также чувствительность кишечной микробиоты к 9 пробиотическим препаратам: Бифиформ, Линекс, Нормофлорин, Аципол, Лактобактерин, Бифидумбактерин, Ламинолакт, Проби­фор, Примадо­филус. При выделении дрожжеподобных грибов рода Candida albicans определялась чувствительность к антимикологическим средствам (Пимафуцин, Нистатин, Дифлюкан и др.).

Подготовка материала для бактериологического исследования проводилась с соблюдением следующих условий: взятие материала из утренней порции, доставка в лабораторию не позднее двух часов с момента дефекации. Бактериологические анализы с определением чувствительности выделяемых микроорганизмов из кишечника проводились в лаборатории «Диагностика» Института экспериментальной медицины (Санкт-Петербург).

Результаты. У всех обследованных детей в 100% случаев обнаруживались бактериологические признаки дисбактериоза.

Для оценки тяжести дисбактериоза выделялись бактериологические признаки: снижение количества или исчезновение бифидофлоры, лактобактерий; снижение полноценной кишечной палочки; увеличение количества штаммов гемолитической кишечной палочки; изменение общего количества кишечной палочки; изменение количества энтерококков и наличие условно-патогенной флоры (энтеробактерий, кокков, дрожжеподобных грибов и др.) [12]. С учeтом числа выделенных бактериологических признаков и по соотношению в микробиологичес­ком анализе анаэробы/аэробы у больных был диагностирован дисбиоз средней степени тяжести (71,5%) и I и III степени тяжести (25% и 8,5% соответственно). Степень тяжести дисбиоза является интегративным показателем, который характеризуется нарушением нормальных соотношений основных популяций микроорганизмов кишечника.

Что касается основных компонентов биоценоза, то следует отметить снижение титра бифидобактерий у 55,5% пациентов, нормальные показатели титра бифидобактерий были у 44,5%. Снижение же титра лактобактерий и колифлоры у обследованных детей было более значимым и выявилось у 82,2% и 93,5% соответственно.

Нормальные показатели титров лактобактерий и колифлоры были у меньшего числа пациентов (у 17,8 и 4,5% соответственно).

Не столь значительное снижение титра бифидобактерий обусловлено тем, что в недалeком прошлом у пациентов при проведении тройной антихеликобактерной терапии и назначении антипротозойной терапии использовался в комплексной терапии кислотоустойчивый штамм бифидобактерий БАГ 791.

Однако общее содержание кишечной палочки и еe полноценных штаммов было значительно сниженным (у 95,5% и 80% детей соответственно). Только у 5% обследованных детей не было роста в бактериологическом анализе условно-патогенной флоры. Чаще всего определялся высев клостридий (33,8%), грибов рода C. albicans (20%), золотистого стафилококка (20%) и энтеробактерий — Klebsiella pneumoniae и K.

oxytoca (17%), гемоштаммов Escherichia coli и Citrobacter spp. (14,3% и 5,7% пациентов). При анализе чувствительности выделенной микрофлоры к антимикробным препаратам, а именно к метронидазолу и нифуроксазиду (Эрсефурил), отмечена высокая степень резистентности (к метронидазолу 100% резистентность, к нифуроксазиду 85% пациентов).

Следует отметить, что у наблюдаемых детей именно данные медикаменты использовались либо для санации от лямблиоза, либо для коррекции дисбактериоза, однако, используя их, санационного эффекта достигнуть не удавалось. Выделенная грамположительная и грамотрицательная микрофлора сохраняла 100% чувствительность к Макмирору и Интетриксу. Следовательно, эмпирический выбор антимикробных препаратов на этапе подавления микробной флоры при дисбактериозе без учeта лабораторной чувствительности не всегда позволяет получить положительный лечебный эффект.

Другая группа препаратов направленного действия — это БФ. Определение чувствительности микроорганизмов проводилось к шести разновидностям БФ. Наибольшая частота чувствительности условно-патогенных микроорганизмов выявилась к Секстафагу (Пермь) — 50% и Пиобактериофагу комплексному (Н. Новгород) — 43%. К остальным видам БФ: интести-БФ, колипротейному БФ (Н.

Новгород), клебсиеллeзному и ПИО-ПОЛИ БФ (Уфа) чувствительность выделенных микроорганизмов в лабораторном тесте не превышала 25%, в то время как резистентность условно-патогенной флоры к различным видам БФ колебалась от 50% до 78%.

Поэтому для коррекции дисбиоза применение БФ целесообразно использовать после определения чувствительности выделенной кишечной флоры к бактериофагам.

Ведущее значение в программах коррекции дисбактериоза у детей имеют пробиотики, они нередко назначаются как стартовые препараты в расчeте на их антагонистические свойства или на этапе восстановления микробиоценоза.

Определение чувствительности микроорганизмов, выделяемых из кишечника при дисбактериозе у детей, проводимое лабораторным тестированием к пробиотикам, выявило интересные закономерности.

Анализ полученных результатов исследований показал, что часто используемые препараты (Бифиформ, Линекс, Нормофлорин) утратили антагонистические свойства, определялась 100% резистентность условно-патогенных микроорганизмов к Бифиформу и Нормофлорину и в 95,5% случаев была резистентность к Линексу.

Что касается чувствительности микробной флоры к Ациполу, Лактобактерину, Ламинолакту и Пробифору, то она колебалась от 68% до 86%. Самая высокая (100%) чувствительность условно-патогенных бактерий (грамположительных и грамотрицательных) выявилась к пробиотику Примадофилус; при сочетании в культуре бактериальных микроорганизмов с C. albicans у Примадофилуса определялась промежуточная чувствительность только к грибам.

Препарат Примадофилус в линейке пробиотиков, на наш взгляд является несомненным лидером. Во-первых, удобная порошковая форма, с хорошей переносимостью, достаточным количеством препарата в одной упаковке на полный курс лечения.

Во-вторых, препарат обладает широким спектром действия и на грамположительную и грамотрицательную микрофлору, высокой (100%) чувствительностью условно-патогенной флоры к данному пробиотику и полным отсутствием аллергических реакций.

Примадофилус содержит смесь лактобацилл (Lactobacillus acidophilus и L. rhamnosus) и бифидобактерий (Bifidobacterium infantis и B. longum), дополнительным компонентом служит мальтодекстрин, в составе нет лактозы, в отличие от большинства других препаратов.

Синбиотик Примадофилус детский является препаратом выбора для коррекции микробиоты у детей с кожно-интестинальной аллергией.

Заключение.

Определение чувствительности микроорганизмов при нарушенном микробиоценозе у детей позволяет оптимизировать коррекцию дисбактериоза как на этапе подавления условно-патогенной флоры, так и на последующих этапах восстановления микробиоты до нормобиоценоза. Выбор эффективных препаратов (антимикробных средств, бактериофагов, пробиотиков) позволяет сократить сроки коррекции нарушенного микробиоценоза и избежать возможных побочных их действий.

Синбиотик Примадофилус имеет преимущества в коррекции бактериальных ассоциаций в микробиоценозе по сравнению с Бифиформом, Линексом, Нормофлорином. При высеве грибов рода C. albicans до назначения Примадофилуса следует использовать антимикотические средства.

Литература

  1. Приворотский В. Ф., Лупова Н. Е., Шильникова О. В. Логика построения корригирующих медикаментозных программ нарушенного микробиоценоза кишечника у детей // РМЖ. 2007, № 1, с. 6–9.
  2. Мазанкова Л. Н. Клинические аспекты применения БАД — пробиотиков в детской практике. М., 2010, с. 1, 23.
  3. Бельмер С. В. Антибиотик-ассоциированный дисбактериоз кишечника // РМЖ. 2004, т. 12, № 3, с. 148–151.
  4. Нижевич А. А., Хасанов Р. Ш., Нуртдинова Н. М., Очилова Р. А., Логиновская В. В., Калметьева Л. Р. Антибиотик-ассоциированный дисбактериоз кишечника у детей // РМЖ. 2007, № 1, с. 12–15.
  5. Щербаков П. Л., Цветков П. М., Нечаева Л. В. Профилактика диареи, связанной с приемом антибиотиков у детей // Вопросы современной педиатрии. 2004, т. 3, № 2.
  6. Запруднов А. М., Мазанкова Л. Н. Микробная флора кишечника и пробиотики. (Методическое пособие.) М., 2001. 32 с.
  7. Урсова Н. И. Дисбактериоз кишечника у детей: руководство для практических врачей. Под ред. Г. В. Римарчук. М.: «Компания БОРГЕС», 2006.
  8. Иванова В. В. Комплексный подход к восстановлению микрофлоры. Современный взгляд на коррекцию дисбиозов. Под ред. А. В. Молокеева. Новосибирск, 2006, с. 6–7, 18–19.
  9. Рябчук Ф. Н., Александрова В. А., Пирогова З. И. Резистентность микробиоты к препаратам, корригирующим нарушения микробиоценоза у детей / Материалы XVII Конгресса дастроэнтерологов России и стран СНГ «Актуальные проблемы абдоминальной патологии у детей». М., 2010, с. 223–224.
  10. Блат С. Ф., Хавкин А. И. Микробиоценоз кишечника и иммунитет // Рос. вестник перинат. и педиатрии. 2011, т. 56, № 1, с. 70.
  11. Александрова В. А. Дисбактериозы у детей. Современная корригирующая терапия. Учебное пособие для врачей. СПб: Издательский Дом СПб МАПО. 2004. 32 с.

Ф. Н. Рябчук*, кандидат медицинских наук, доцент М. А. Суворова**

*СПбМАПО, **Лаборатория «Диагностика» ИЭМ, Санкт-Петербург

Контактная информация об авторах для переписки: Консультативно-диагностический центр для детей №2, Санкт-Петербург, ул. Гладкова, д. 4, 198099

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *