Кроветворение: процессы и главные факторы

Кроветворение: процессы и главные факторы

Постоянство клеточного состава крови, его обновление осуществляются благодаря взаимосвязи крови и органов, образующих ее элементы (кроветворных).

В костном мозге созревают красные кровяные тельца, зернистые лейкоциты и тромбоциты. Общий вес его у взрослого человека приблизительно составляет 1500 г. Лимфатические узлы, селезенка образуют лимфоциты и моноциты.

Особенности процесса образования клеток крови: теории и факты

  • Процесс образования клеток крови идет непрерывно в течение всей человеческой жизни, интенсивность его строго соответствует потребностям организма.
  • По одной из современных теорий следует, что клетки крови человека — эритроциты, лейкоциты и тромбоциты происходят из единой родоначальной материнской клетки, так называемой «стволовой».
  • Путем ее деления и развития появляются клепки, предопределяющие различные ветви кроветворения: образование эритроцитов, зернистых лейкоцитов (гранулоцитов), незернистых лейкоцитов (агранулоцитов), тромбоцитов.

Порожденная общей «стволовой» клеткой, каждая из этих ветвей имеет и свою собственную родоначальную клетку. В процессе деления и постепенного созревания и преобразования этих костномозговых элементов появляются зрелые клетки, поступающие в кровь.

К чести русской науки следует оказать, что мысль о происхождении всех клеток крови из единого источника принадлежит знаменитому русскому ученому-гистологу А. А. Максимову, создавшему еще в 1900—1914 гг. свою теорию кроветворения. Эти исследования нашли подтверждение и дальнейшее развитие в трудах советских исследователей.

Вместе с тем в некоторыми учеными высказывалась мысль о том, что еще до рождения человека в кроветворных органах предопределен вид каждой кроветворной линии — гранулоцитарной, эритроцитарной, лимфоцитарной. В пользу такой точки зрения приводятся данные биохимических исследований клеток крови и костного мозга.

Так, советские биохимики П. Ф. Сейц и П. С. Луганова обнаружили, что для определенных линий кроветворных элементов характерен определенный вид энергетического обмена.

На основании этих данных они полагали, что и происхождение клеточных форм на каком-то этапе должно быть различным, поскольку характерный тип обмена (как группа крови, резус-фактор), возникший в клетке в начальном периоде ее развития, сохраняется во всех клеточных популяциях (производных данной линии).

Из всего сказанного можно сделать заключение о том, что кровь обладает многообразными функциями, имеющими первостепенное значение для существования организма. Всякое нарушение постоянства состава этой внутренней среды организма чревато далеко идущими последствиями, приводящими к нарушению здоровья человека.

Как осуществляется кроветворение: механизмы

Процессы разрушения красных кровяных шариков и их образования строго сбалансированы. Если организм теряет какое-то количество крови, то не проходит 2—3 недель, как снова восстанавливается исходный уровень числа эритроцитов и концентрации гемоглобина. При этом всегда наблюдается значительное убыстрение образования красных кровяных телец (эритропоэза) в костном мозге.

Не вызывает сомнений факт существования в организме особых механизмов регуляции эритропоэза, хорошо выявляемых тогда, когда под влиянием каких-либо причин резко уменьшается количество эритроцитов и в связи с этим развивается кислородное голодание — гипоксия.

Законно предположить, что уменьшение снабжения организма кислородом автоматически приводит к увеличению продукции красных кровяных телец.

  • Хорошо известно, что у жителей высокогорья, а так же у альпинистов, достигающих больших высот, число эритроцитов заметно повышается по сравнению с исходной нормой.
  • И наоборот, если в барокамере создать повышенное давление кислорода, то через некоторое время можно отметить постепенное затухание, «вялость» красного кроветворения, вплоть до полного его прекращения.

Возникает вопрос о механизме «эритроцитостимулирующего» действия кислородного голодания. Большим количеством исследований установлено, что этот фактор убыстряет кроветворение через посредство особого вещества, стимулирующего эрицропоэз и получившего название «эритропоэтин».

В 1906 г. два французских исследователя — Карно и Дефляндер — обнаружили, что сыворотка крови, взятая у кроликов через 20 часов после массивной кровопотери и введенная другому здоровому кролику, способствовала у последнего приросту эритроцитов на 2—3 млн. в 1 мм3 крови, а также увеличению количества гемоглобина.

  1. Последующие эксперименты показали, что кислородная недостаточность любого происхождения способна повышать эритростимулирующие свойства кровяной сыворотки.
  2. Наиболее убедительные доказательства существования в организме стимулятора красного кроветворения были представлены в опытах на искусственно сращенных между собой (наподобие сиамских близнецов) крысах.

Этот интересный опыт выглядел так: одна из крыс дышала газовой смесью, содержащей пониженное количество кислорода, а ее партнер — воздухом с нормальным содержанием кислорода. И оказалось, что у обоих животных в костном мозге происходило одинаковое разрастание клеток «красного ряда», а в периферической крови — значительное увеличение эритроцитов.

Объяснить это можно следующим образом: у крысы под влиянием кислородного голодания образуется вещество эритростимулирующего действия, т. е. эритропоэтин, который переходит с кровью через сращенные кровеносные сосуды в организм партнера и вызывает у него активизацию кроветворения.

В каком месте организма образуется эритропоэтин?

Многочисленные клинические наблюдения и особенно опыты на животных представили убедительные аргументы в пользу почечного происхождения эритропоэтина.

Было показано, что двустороннее удаление почек ликвидирует способность организма образовывать эритропоэтин в ответ на кровопотерю или на недостачу кислорода по другой причине. Последующая же подсадка почки, взятой от другого животного, вызывала очень быстрое восстановление эритропоэза в костном мозге.

Роль витамина В12 в кроветворении

В кроветворении принимают участие различные витамины, среди которых особая роль принадлежит витамину В12, содержащему кобальт.

Источником витамина В12 служат продукты животного происхождения; в растительных продуктах он отсутствует. Благодаря этому витамину поддерживается нормальный процесс созревания эритроцитов у здорового человека.

В сутки взрослому человеку необходимо 3—5 мг витамина В12. Как показали современные исследования, витамин В12, попавший в организм с пищей, всасывается в кишечнике лишь при соединении его с особым белком — гастромукопротеином (который иначе называется «внутренний фактор»).

Гастромукопротеин вырабатывается у человека железами желудка и обладает способностью образовывать с витамином В12 комплексное соединение. Оказалось, что этот белок предохраняет витамин от пожирания микроорганизмами, заселяющими кишечник. Таким образом, он выступает в роли «проводника» витамина В12 и спасает его от разрушающего действия микробов.

Всосавшийся витамин накапливается в печени и затем используется для целей кроветворения по мере необходимости.

Установлено, что витамин B12 принимает активное участие в образовании соединений, являющихся составными частями нуклеиновых кислот, — тех самых кислот, коими так богаты ядра клеток и которые определяют основные наследственные признаки организма.

В случае нехватки витамина B12 задерживается синтез нуклеиновых кислот, в результате чего неизбежно нарушается деление постоянно размножающихся кроветворных клеток. Тогда в костном мозге вместо нормальных эритробластов появляются огромные, медленно созревающие клетки, получившие название мегалобластов (от греческого слова «мегалос» — огромный).

На этой почве происходит развитие тяжелого малокровия — злокачественная анемия.

Роль гормонов и нервной системы в кроветворении

Вся сложная, необыкновенно подвижная система крови находится под постоянным влиянием эндокринной и нервной систем. Гормоны (от греческого слова «гормао» — возбуждаю), выделяемые эндокринными органами (железами внутренней секреции), попадают непосредственно в кровь.

Через нее гормоны осуществляют связь одних органов и систем с другими. Они оказывают регулирующее влияние на различные функции организма, в том числе и на кроветворение. Так воздействуют гормоны, вырабатываемые передней долей гипофиза, щитовидной железой, корой надпочечников, половыми железами.

Значительное влияние на процессы кроветворения и распределения элементов крови в сосудах и депо оказывает и, нервная система.

ссылкой:

Гемопоэз — классификация, физиология и механизмы регуляции образования клеток крови

Кроветворение: процессы и главные факторы

Чтобы эритропоэз протекал нормально, требуются эритропоэтины, синтезируемые тканями почек. Стимулирующее действие на этот процесс оказывают:

  • катехоламины;
  • тироксин;
  • мужские половые гормоны.

Есть и другое понятие — миелопоэз, при котором образуются форменные элементы, за исключением лимфоцитов. Чтобы изучить в достаточной степени схему кроветворения, надо знать основы морфологии костного мозга. Выработка эритроцитов возможна только при условии достаточного присутствия в тканях фолиевой кислоты и витамина B12. Также для нормального кроветворения требуются:

Небольшое количество эритропоэтина вырабатывается, если в организме нет патологий. В этом случае соединение перемещается к красному костному мозгу и взаимодействует там со специальными рецепторами. Результатом становится увеличение выработки гемоглобина. Есть и специальные неспецифические факторы, которые воздействуют на эритропоэз и стимулируют его. К ним относятся:

  • андрогены;
  • глюкокортикоиды;
  • АКТГ.

Такое происходит и в случае стимулирующего воздействия на симпатическую нервную систему. Гемолиз, происходящий внутри клеток, влечет за собой разрушение красных форменных элементов крови. Лейкопоэз имеет место в ткани лимфы и костного мозга.

Стимулирующее воздействие на него оказывают так называемые факторы роста. Интерлейкины влияют на лейкопоэз, приводя к усилению производства эозинофилов и базофилов.

Стимулировать лейкопоэз способны вещества, образованные после распада микроорганизмов, тканей, а также самих лейкоцитов.

Чтобы тромбоцитопоэз стал возможным, требуются тромбоцитопатины. Они производятся в печени и селезенке. В этих органах происходит экстрамедуллярный гемопоэз. Благодаря этим компонентам обеспечивается нормальное соотношение между образованием пластинок крови, а также процессами их разрушения.

У плода в утробе и детей в период роста красный костный мозг обнаруживается во всех костях, а у взрослых — в основном в подвздошных костях, телах позвонков, ребрах и грудине.

Контроль гемоцитопоэза

Гемоцитопоэз объединяет процессы, связанные с преобразованием различных клеток в зрелые элементы крови. Так обеспечивается естественное сокращение лишнего количества форменных элементов.

Полипотентные стволовые клетки самостоятельно проходят регенерацию. Они могут образовываться вне органов кроветворения.

При стандартной дифференциации полипотентные клетки, сосредоточенные в костном мозге, способствуют зарождению зрелых элементов крови. Это:

  • базофилы;
  • эритроциты;
  • различные типы лимфоцитов;
  • эозинофилы;
  • нейтрофилы.

Все они образуются в определенном количестве, которое не должно превышать норму. Стабильные показатели отмечаются у всех здоровых граждан, но есть определенные условия, когда возрастает потребность в тех или иных форменных элементах.

К ним относят:

  • попадание инфекции в организм;
  • механические повреждения и другие факторы, способствующие потере определенного количества крови;
  • адаптация к условиям высокогорья.

Стволовые клетки

Стволовые клетки обладают уникальными свойствами, так как способны самостоятельно обновляться. Есть несколько категории таких соединений:

  • эмбриональные;
  • соматические, которые образуются у взрослого человека;
  • индуцированные.
Читайте также:  Внутривенная анестезия

Для всех категорий стволовых клеток имеются одинаковые свойства. Примечательно, что они недифференцированные и не имеют специализированных компонентов в своей структуре. Кроме того, они участвуют в процессах пролиферации, когда образуется большое количество клеток. У них есть способность к образованию зрелых элементов, к которым относятся форменные элементы крови.

При гемопоэзе схема кроветворения всегда протекает по одинаковым алгоритмам. Это необходимо для поддержания нормальной функции органов и систем. После рождения происходит постэмбриональный гемопоэз. Регуляция отличается от таковой в случае эмбриональной, имеющей место в утробе.

В гистологии гемопоэз тоже имеет важное значение для определения нормальной функции крови. Он выполняет важнейшую функцию по физиологическому развитию кровяных клеток и поддержанию их уровня в допустимых пределах.

Гемопоэтические нарушения могут свидетельствовать о появлении очагов патологии.

Продолжительность жизни каждого форменного элемента должна быть строго определенной, и за это тоже отвечает гемопоэз.

Физиология процесса и новые теории изучаются до сих пор, но ключевые положения ученым уже известны. Особенно важно строение основных органов кроветворения.

В случае возникновения патологии источник проблемы обнаружить несложно, если диагноз так или иначе связан с кроветворением. Вероятно угнетение тех или иных его механизмов.

Характерной особенностью является асимметричное деление, ведущее к формированию в каждой половой клетке по 2 дочерних. В них присутствуют родительские, которые в дальнейшем сохраняют свойства самообновления.

Другие переходят в формы специализированных клеток. Стволовые же примечательны тем, что могут распознавать области повреждения и перемещаться туда. За счёт этого обеспечивается возможность обновления тканей.

Свойства колониеобразующих тканей

Из соединений могут формироваться предшественники эритроцитов, которые носят название ретикулоцитов, а также эозинофилов, моноцитов и и базофилов. Образование клеток плазмы и Т-лимфоцитов происходит с участием селезенки, тимуса и ткани лимфы. Процессы захвата могут иметь место в селезенке.

Говоря про колониеобразующие ткани, надо указать гемоцитопоэзиндуцирующее микроокружение (ГИМ). В процессе его образования принимают участие элементы, входящие в состав паренхимы костного мозга и стромы.

Они отвечают за образование макрофагов, эндотелиоцитов капилляров и более крупных сосудов. Эти компоненты выступают основой для закладки нервно-мышечных тканей.

ГИМ передают в клетки специальные сигналы, направленные на регуляцию той или иной функции.

Микроокружение участвует в обеспечении полноценного метаболизма. Гемоцитопоэз состоит из множества сложных этапов. Он отвечает за поддержание постоянства, торможения или ускорения деятельности клеток.

Регуляция интенсивности гемопоэза должна происходить сообразно меняющимся потребностям органов и систем. При этом может происходить как торможение, так и ускорение, в зависимости от обстоятельств.

Обязательно является поступление информации в виде сигналов. Это обеспечивается нейромедиаторами и гормонами.

Кроветворение будет полноценным, если синтезируется достаточно пластических и энергетических веществ, минералов, витаминов.

Регуляция базируется на образовании взрослых клеток из стволовых, расположенных в тканях костного мозга, и гормонов с нейромедиаторами. В нем принимают участие цитокины.

Факторы микроокружения способны стимулировать гемопоэз, другие направлены на процесс торможения. Транскрипционные отвечают за внутреннюю регуляцию дифференцировки в клеточных ядрах.

Воздействие на кроветворные стволовые клетки обеспечивается влиянием на них нескольких факторов одновременно. Специфические рецепторы, которые включены в состав клеток крови, испытывают на себе стимулирующее действие указанных веществ и факторов.

На каждой ступени дифференцировки набор может видоизменяться. Для роста, выживания и полноценного созревания стволовых других клеток-предшественников требуются ростовые факторы. Они могут быть позднодействующими и обеспечивают дифференцировку ростков клеток.

Как происходит процесс кроветворение в организме?

В связи с тем, что клетки крови имеют определенную продолжительность жизни, требуется их постоянное обновление, которое осуществляется в процессах кроветворения.

Кроветворение (гемопоэз) – это интенсивный процесс образования клеток крови, длящийся на протяжении всей жизни организма. Целью гемопоэза является замена мертвых клеток крови, а также тех, которые перешли из крови в другие ткани.

В экстремальных условиях, таких как гипоксия, инфекционный процесс, гемопоэз приспосабливается к потребностям организма.

Кроветворение начинается в желточном мешке зародыша. Со второго лунного месяца этот процесс происходит в печени и селезенке, а с четвертого – в костном мозге. После рождения кроветворение перемещается в красный костный мозг скелетных костей, и лимфоциты образуются в лимфоидной ткани.

Образование различных типов клеток крови происходит в пазухах костного мозга. В этом процессе участвуют гемопоэтические стволовые клетки и стромальные клетки, фибробласты, остеобласты, эндотелиальные клетки и макрофаги.

Все эти клетки образуют необходимое микроокружение для нормального течения кроветворения.

Кроветворение: процессы и главные факторы

Гемопоэтическая стволовая клетка

Стволовые клетки обладают замечательным потенциалом дифференцироваться во многие различные типы клеток в организме. Кроме того, во многих тканях они служат своеобразной ремонтной средой. Стволовые клетки отличаются от других двумя важными характеристиками.

Во-первых, они являются неспециализированными клетками и способны к регенерации путем деления клеток даже после длительных периодов бездействия.

Во-вторых, при определенных условиях они могут быть вызваны определенными факторами, чтобы дифференцироваться в специфичные для органа клетки со специальными функциями.

Клетки крови образуются гемопоэтическими стволовыми клетками в результате процессов пролиферации и дифференцировки. Дифференциация регулируется факторами роста и цитокинами, которые выделяются клетками в микроокружении. После начала процессов дифференцировки гемопоэтические стволовые клетки теряют способность к самообновлению.

Они могут дифференцироваться в клетки-предшественники, которые могут стать клетками крови в двух основных категориях: миелоидная линия или лимфоидная линия.

После нескольких делений получают унипотентные клетки-предшественники, которые способны дифференцироваться только в одну клеточную линию – гранулоцит-моноцит, эритроид, мегакариоцит, B- или T-лимфоцит.

Типы гематопоэза

Гематопоэз бывает нескольких типов, в зависимости от дифференцирующихся клеток:

  • эритропоэз;
  • гранулоцитопоэз;
  • лимфоцитопоэз;
  • моноцитопоэз;
  • тромбоцитопоэз.

Эритропоэз

Процесс образования эритроцитов называется эритропоэз или эритроцитопоэз. Он начинается с дифференцировки плюрипотентной стволовой клетки в мультипотентную стволовую клетку, за которой следует колония эритроцитов, образующая клетку-предшественник и проэритробласт.

Проэритробласт – это клетка, которая содержит ядро и множество рибосом, в которых начинает синтезироваться гемоглобин. Базофильный эритробласт, меньший по размеру, отличается от проэритробласта.

После еще нескольких стадий деления образуется ретикулоцит, который является первой неядерной клеткой, содержащей остатки клеточных органелл. После того, как ретикулоцит теряет свои органеллы, образуется эритроцит. Зрелый эритроцит выполняет свои функции и живет около 120 дней.

Затем он расщепляется на селезенку и гемоглобин, который содержался в нем, превращается в печень и выводится из организма в виде билирубина.

Гранулоцитопоэз

Гранулоцитопоэз начинается с плюрипотентной гемопоэтической стволовой клетки. Первым идентифицированным предшественником гранулоцитов является миелобласт. Миелобласт образует промиелоцит и миелоцит.

Миелоциты содержат специфические гранулы и делятся на нейтрофилы, эозинофилы и базофилы. Нейтрофильный миелоцит имеет почечное ядро и два типа гранул (азурофильные и специфические). Эозинофильный миелоцит имеет овальное ядро и эозинофильные гранулы.

Базофильный миелоцит имеет овальное ядро и азурофильные гранулы. После нескольких последовательных делений миелоцитов образуются метамиелоциты, которые снова делятся на нейтрофилы, эозинофилы и базофилы. Затем следует образование палочковидных и сегментарных гранулоцитов.

Время, необходимое для дифференцировки стволовых клеток в зрелые гранулоциты, составляет около 10 дней.

Лимфоцитопоэз

Лимфоцитопоэз – это процесс образования лимфоцитов. Он проходит следующие стадии: гемопоэтические стволовые клетки, клетки-предшественники лимфоцитов, лимфобласты и лимфоциты. Три типа клеток развиваются из клеток-предшественников – B- и T-лимфоцитов и естественных клеток-киллеров (NK-клеток).

Моноцитопоэз

В результате моноцитопоэза образуются моноциты, которые попадают в кровоток и при необходимости превращаются в макрофаги.

Процесс образования моноцитов начинается с гемопоэтических стволовых клеток, за которыми следует колония моноцитов, образующая клетки-предшественники, монобласты, промоноциты и моноциты.

Время, необходимое для дифференциации зрелого моноцита, составляет около 55 часов.

Тромбоцитопоэз

В процессе тромбоцитопоэза образуются тромбоциты. Он начинается с гемопоэтических стволовых клеток, за которыми следуют колониеобразующие единицы мегакариоциты и тромбоциты. Мегакариоциты представляют собой крупные клетки, из которых протромбоциты образуются путем частичной фрагментации, из которой образуются тромбоциты.

Регуляция кроветворения

Регуляция кроветворения осуществляется посредством взаимодействия генетического потенциала с факторами окружающей среды, которые включают микросреду и факторы роста.

Факторы роста, также называемые гемопоэтическими цитокинами, представляют собой семейство из более чем 20 гликопротеинов. Они продуцируются стромальными клетками, эндотелиальными клетками, фибробластами, макрофагами, лимфоцитами и другими.

Некоторыми из наиболее известных гематопоэтических цитокинов являются гранулоцит-колониестимулирующий фактор, моноцит-колониестимулирующий фактор, эритропоэтин, тримбоцитопоэтин и другие.

Их эффекты выражаются в стимулирующем или ингибирующем влиянии на деление, дифференцировку, пролиферацию и апоптоз клеток. Кроме того, они облегчают взаимодействие между стволовыми клетками и компонентами микроокружения.

Эритропоэтин – это гормон, который регулирует образование красных кровяных клеток. Вырабатывается в почках и в печени. Эритропоэтин действует путем связывания с рецепторами, расположенными на мембране эритроидных клеток. Эта связь между гормоном и рецептором стимулирует их дифференциацию и пролиферацию. Эритропоэтин действует на поздних стадиях эритропоэза.

Тромбоцитопоэтин – это гормон, который вырабатывается в печени на ранних стадиях кроветворения. В нормальных условиях большинство клеток костного мозга не делятся.

Более зрелые клетки-предшественники пролиферируют и образуют относительно постоянное количество клеток крови, а некоторые из них подвергаются апоптозу. Этот тип кроветворения называют конститутивным, потому что это происходит в относительно постоянных условиях.

Также различают индуцибельный гемопоэз, который стимулируется при наличии стресса в организме.

Кроветворение является жизненно важным процессом, подлежащим точной регуляции. Благодаря этому количество клеток крови в организме поддерживается относительно постоянным. Это позволяет крови выполнять свои важные физиологические функции.

Депо крови

Депо крови – это ткани или органы, способные накапливать значительное количество крови, которая может использоваться организмом при необходимости.

В состоянии покоя около 5% циркулирующей крови находится в капиллярах, а также в сердце, 20% в артериях и 70% в венах, что свидетельствует о важности венозных сосудов и в качестве резервуара крови.

Таким образом, некоторые сосудистые области – печень, подкожная клетчатка, легкие, брюшные вены и селезенка – играют роль складов крови, из которых, при необходимости, больше крови включается в артериальное кровообращение. Значение селезенки как депо крови было разъяснено Д.

Араховацем. Это очень крупное депо крови, где накапливается около 8-12% её объема. Печень также способна хранить значительное количество крови, но не так много, как селезенка. Кровь в печени сосредоточена в синусоидах.

При кровопотере в результате симпатической стимуляции венозные сосуды в хранилищах (депо) крови сужаются, и вытесненная ими кровь может компенсировать уменьшение объема циркулирующей крови. Важно отметить, что компенсация возможна, когда речь идет о потере 20% от общего количества крови (эквивалентно примерно 1 литру крови).

Читайте также:  Все, что нужно знать о менструальном цикле и его нарушениях

Это причина, по которой внезапные небольшие кровопотери у здоровых людей (при рождении, сдаче крови) относительно хорошо переносятся и не вызывают значительных нарушений гемодинамики. Когда, однако, потеря крови происходит быстро и носит массивный характер (более 1/3 общего объема крови), организм не в состоянии это компенсировать.

Затем, из-за общего нарушения кровообращения, может наступить смертельный исход.

В связи с тем, что объем и линейная скорость крови в хранилищах крови очень низкие, создаются условия для удержания стенок клеток крови. В результате значение гематокрита крови в хранилищах крови увеличивается.

В случаях, когда кровь из хранилищ поступает в общий кровоток, наблюдается повышенное количество лейкоцитов и эритроцитов в периферической крови. Это увеличение не связано с увеличением производства новых кровяных клеток кроветворными органами, но, напротив, оно быстрое, преходящее и имеет перераспределительный характер.

Haematopoiesis — Wikipedia

Диаграмма, показывающая развитие различных клеток крови от гемопоэтических стволовых клеток до зрелых клеток

Гемопоэз ( , от греческого αἷμα , 'кровь' и ποιεῖν ' чтобы'; и hematopoiesis в американском английском; иногда также h (a) emopoiesis ) — это образование клеточных компонентов крови . Все клеточные компоненты крови происходят из гемопоэтических стволовых клеток . У здорового взрослого человека ежедневно вырабатывается примерно 10 11 –10 12 новых клеток крови для поддержания стабильного уровня в периферическом кровообращении.

Процесс

Гематопоэтические стволовые клетки (ГСК)

Гематопоэтические стволовые клетки (HSC) находятся в мозговом веществе кости ( костном мозге ) и обладают уникальной способностью давать начало всем различным типам зрелых клеток крови и тканям.

HSC являются самообновляющимися клетками: когда они дифференцируются, по крайней мере, некоторые из их дочерних клеток остаются в виде HSC, поэтому пул стволовых клеток не истощается. Это явление называется асимметричным делением.

Другие дочерние клетки HSC ( миелоидные и лимфоидные клетки-предшественники) могут следовать любым другим путям дифференцировки, которые приводят к продукции одного или нескольких конкретных типов клеток крови, но не могут обновляться.

Пул предшественников неоднороден и может быть разделен на две группы; длительные самообновляющиеся HSC и только временно самообновляющиеся HSC, также называемые краткосрочными. Это один из основных жизненно важных процессов в организме.

Типы клеток

Все клетки крови делятся на три линии.

  • Красные кровяные тельца , также называемые эритроцитами, являются клетками, переносящими кислород . Эритроциты функционируют и попадают в кровь. Количество ретикулоцитов, незрелых эритроцитов, дает оценку скорости эритропоэза .
  • Лимфоциты — это краеугольный камень адаптивной иммунной системы. Они происходят от обычных лимфоидных предшественников. Лимфоидная линия состоит из Т-клеток , В-клеток и естественных клеток-киллеров . Это лимфопоэз .
  • Клетки миелоидной линии, которые включают гранулоциты , мегакариоциты и макрофаги , происходят от общих миелоидных предшественников и участвуют в таких разнообразных ролях, как врожденный иммунитет и свертывание крови . Это миелопоэз .

Гранулоцитопоэз (или гранулоцитопоэз) — это кроветворение гранулоцитов, за исключением тучных клеток, которые являются гранулоцитами, но с экстрамедуллярным созреванием.

Мегакариоцитопоэз — это кроветворение мегакариоцитов.

Терминология

Между 1948 и 1950 годами Комитет по уточнению номенклатуры клеток и заболеваний крови и кроветворных органов опубликовал отчеты о номенклатуре клеток крови. Обзор терминологии показан ниже, от самой ранней до последней стадии разработки:

  • [корень] взрыв
  • про [корень] цита
  • [корень] цита
  • мета [корневая] цита
  • имя зрелой клетки

Корень для колониеобразующих единиц эритроцитов (КОЕ-Е) — «rubri», для колониеобразующих единиц гранулоцит-моноцит (КОЕ-ГМ) — «грануло» или «миело» и «моно», для колониеобразующих единиц лимфоцитов.

(КОЕ-Л) — это «лимфо», а для колониеобразующих единиц мегакариоцитов (КОЕ-мег) — «мегакарио». Согласно этой терминологии, этапами образования эритроцитов являются: рубрибласт, прорубрицит, рубрицит, метарубрицит и эритроцит.

Однако в настоящее время наиболее распространенной является следующая номенклатура:

Остеокласты также возникают из гемопоэтических клеток линии моноцитов / нейтрофилов, в частности CFU-GM.

Место расположения

Сайты гемопоэза (у человека) в пре- и постнатальном периодах

У развивающихся эмбрионов кроветворение происходит в скоплениях клеток крови в желточном мешке, называемых островками крови . По мере развития происходит кроветворение в селезенке , печени и лимфатических узлах . Когда костный мозг развивается, он в конечном итоге берет на себя задачу формирования большей части клеток крови для всего организма. Однако созревание, активация и некоторая пролиферация лимфоидных клеток происходит в селезенке, тимусе и лимфатических узлах. У детей кроветворение происходит в костном мозге длинных костей, таких как бедренная и большеберцовая кость. У взрослых это происходит в основном в области таза, черепа, позвонков и грудины.

В некоторых случаях при необходимости может возобновиться кроветворная функция печени, тимуса и селезенки. Это называется экстрамедуллярным кроветворением . Это может привести к значительному увеличению размеров этих органов.

Во время внутриутробного развития, поскольку кости и, следовательно, костный мозг развиваются позже, печень функционирует как главный кроветворный орган. Следовательно, в процессе развития печень увеличивается. Экстрамедуллярный гемопоэз и миелопоэз могут поставлять лейкоциты при сердечно-сосудистых заболеваниях и воспалениях в зрелом возрасте.

Селезенки макрофаги и молекула адгезии могут быть вовлечены в регулировании экстрамедуллярного поколения миелоидных клеток в сердечно — сосудистых заболеваниях .

Созревание

Более подробная и исчерпывающая диаграмма, показывающая развитие различных клеток крови у человека.

  • Морфологические характеристики гемопоэтических клеток показаны при окраске по Райту, окраске по Май-Гимзе или окраске по Маю-Грюнвальду-Гимза. В скобках указаны альтернативные названия определенных ячеек.
  • Некоторые клетки могут иметь более одного характерного внешнего вида. В этих случаях было включено более одного представления одной и той же ячейки.
  • Вместе моноциты и лимфоциты составляют агранулоциты, в отличие от гранулоцитов (базофилов, нейрофилов и эозинофилов), которые образуются во время гранулопоэза.
  • B., N. и E. обозначают базофильный, нейтрофильный и эозинофильный соответственно — как в случае базофильного промиелоцита. Для лимфоцитов фактическими обозначениями являются Т и В.
  1. Полихромный эритроцит (ретикулоцит) справа показывает свой характерный внешний вид при окрашивании метиленовым синим или лазурью B.
  2. Эритроцит справа является более точным представлением его реального внешнего вида при просмотре через микроскоп.
  3. Другие клетки, возникающие из моноцита: остеокласт, микроглия (центральная нервная система), клетка Лангерганса (эпидермис), клетка Купфера (печень).
  4. Для ясности, Т- и В-лимфоциты разделены, чтобы лучше показать, что плазматическая клетка возникает из В-клетки. Обратите внимание, что нет никакой разницы во внешнем виде B- и T-клеток, если не применяется специфическое окрашивание.

По мере созревания стволовая клетка претерпевает изменения в экспрессии генов, которые ограничивают типы клеток, которыми она может стать, и приближают ее к определенному типу клеток ( клеточная дифференцировка ). Эти изменения часто можно отследить, отслеживая присутствие белков на поверхности клетки. Каждое последующее изменение приближает ячейку к окончательному типу ячейки и дополнительно ограничивает ее потенциал, чтобы стать ячейкой другого типа.

Определение судьбы клетки

Были предложены две модели кроветворения: детерминизм и стохастическая теория.

Для стволовых клеток и других недифференцированных клеток крови в костном мозге определение обычно объясняется теорией детерминизма гематопоэза, согласно которой колониестимулирующие факторы и другие факторы гемопоэтического микроокружения определяют, что клетки следует определенному пути клеточной дифференцировки.

Это классический способ описания кроветворения. В стохастической теории недифференцированные клетки крови дифференцируются от определенных типов клеток случайным образом.

Эта теория была подтверждена экспериментами, показывающими, что в популяции гематопоэтических клеток-предшественников мыши лежащая в основе стохастическая изменчивость в распределении Sca-1 , фактора стволовых клеток , подразделяет популяцию на группы, демонстрирующие переменную скорость клеточной дифференцировки .

Например, под влиянием эритропоэтина (фактора дифференцировки эритроцитов) субпопуляция клеток (определяемая уровнями Sca-1) дифференцировалась в эритроциты в семь раз быстрее, чем остальная популяция.

Кроме того, было показано, что если дать возможность расти, эта субпопуляция восстановит исходную субпопуляцию клеток, подтверждая теорию о том, что это стохастический обратимый процесс. Другой уровень, на котором может иметь значение стохастичность, — это процесс апоптоза и самообновления. В этом случае гемопоэтическое микроокружение преобладает над тем, чтобы некоторые клетки выжили, а некоторые, с другой стороны, совершили апоптоз и умирали. Регулируя этот баланс между различными типами клеток, костный мозг может изменять количество различных клеток, которые в конечном итоге будут производиться.

Факторы роста

Производство красных и белых кровяных телец регулируется с большой точностью у здоровых людей, а производство лейкоцитов быстро увеличивается во время инфекции. Размножение и самообновление этих клеток зависят от факторов роста.

Одним из ключевых участников самообновления и развития гемопоэтических клеток является фактор стволовых клеток (SCF), который связывается с рецептором c-kit на HSC. Отсутствие SCF смертельно.

Существуют и другие важные факторы роста гликопротеинов, которые регулируют пролиферацию и созревание, такие как интерлейкины IL-2 , IL-3 , IL-6 , IL-7 . Другие факторы, называемые колониестимулирующими факторами (CSF), специфически стимулируют продукцию коммитированных клеток.

Три CSF представляют собой CSF гранулоцитов-макрофагов (GM-CSF), CSF гранулоцитов (G-CSF) и CSF макрофагов (M-CSF). Они стимулируют образование гранулоцитов и действуют либо на клетки-предшественники, либо на клетки конечного продукта.

Эритропоэтин необходим для того, чтобы миелоидная клетка-предшественник стала эритроцитом. С другой стороны, тромбопоэтин заставляет миелоидные клетки-предшественники дифференцироваться в мегакариоциты ( клетки, образующие тромбоциты ). На диаграмме справа представлены примеры цитокинов и дифференцированных клеток крови, которые они вызывают.

Факторы транскрипции

Факторы роста инициируют пути передачи сигналов, которые приводят к активации факторов транскрипции . Факторы роста вызывают разные результаты в зависимости от комбинации факторов и стадии дифференцировки клетки. Например, длительная экспрессия PU.

Читайте также:  Причины боли и кожных изменений соска и околососковой области

1 приводит к миелоидному обязательству, а кратковременная индукция активности PU.1 приводит к образованию незрелых эозинофилов. Недавно было сообщено, что факторы транскрипции, такие как NF-κB, могут регулироваться микроРНК (например, miR-125b) в гематопоэзе.

Первым ключевым игроком дифференцировки от HSC до мультипотентного предшественника (MPP) является фактор транскрипции CCAAT-энхансер, связывающий белок α ( C / EBP α). Мутации в C / EBPα связаны с острым миелоидным лейкозом .

С этого момента клетки могут дифференцироваться либо по линии эритроид-мегакариоцитов, либо по лимфоидной и миелоидной клонам, которые имеют общего предшественника, называемого мультипотентным предшественником с лимфоидным примированием. Есть два основных фактора транскрипции. PU.

1 для линии эритроид-мегакариоцитов и GATA-1 , который приводит к лимфоидно-примированному мультипотентному предшественнику.

Другие факторы транскрипции включают Ikaros ( развитие B-клеток ) и Gfi1 (способствует развитию Th2 и ингибирует Th1) или IRF8 ( базофилы и тучные клетки ).

Примечательно, что определенные факторы вызывают разные ответы на разных стадиях гематопоэза. Например, CEBPα в развитии нейтрофилов или PU.1 в развитии моноцитов и дендритных клеток.

Важно отметить, что процессы не являются однонаправленными: дифференцированные клетки могут восстанавливать атрибуты клеток-предшественников.

Примером является фактор PAX5 , который важен для развития В-клеток и связан с лимфомами. Неожиданно оказалось, что мыши с условным нокаутом pax5 позволили периферическим зрелым В-клеткам дедифференцироваться до ранних предшественников костного мозга. Эти находки показывают, что факторы транскрипции действуют как хранители уровня дифференцировки, а не только как инициаторы.

Мутации факторов транскрипции тесно связаны с раком крови, таким как острый миелоидный лейкоз (ОМЛ) или острый лимфобластный лейкоз (ОЛЛ). Например, известно, что Икарос является регулятором множества биологических событий. Мышам без Ikaros не хватает В-клеток , естественных киллеров и Т-клеток .

Икарос имеет шесть доменов с цинковыми пальцами , четыре из которых являются консервативными ДНК-связывающими доменами и два предназначены для димеризации .

Очень важным открытием является то, что разные цинковые пальцы участвуют в связывании с разными участками ДНК, и это является причиной плейотропного эффекта Икароса и различного вовлечения в рак, но в основном это мутации, связанные с пациентами с BCR-Abl, и это плохой прогностический маркер. .

Другие животные

У некоторых позвоночных гематопоэз может возникать там, где есть рыхлая строма соединительной ткани и замедленное кровоснабжение, например, в кишечнике , селезенке или почках .

Смотрите также

Рекомендации

дальнейшее чтение

Внешние ссылки

Гемопоэз

Гемопоэз — процесс образования форменных элементов крови: эритроцитов (эритропоэз), лейкоцитов (лейкопоэз) и тромбоцитов (тромбоцитопоэз).

Он совершается в красном костном мозге, где образуются эритроциты, все зернистые лейкоциты, моноциты, тромбоциты, В-лимфоциты и предшественники Т-лимфоцитов. В тимусе проходит дифференцировка Т-лимфоцитов, в селезенке и лимфатических узлах — дифференцировка В-лимфоцитов и размножение Т-лимфоцитов.

Общей родоначальной клеткой всех клеток крови является полипотентная стволовая клетка крови, которая способна к дифференцировке и может дать начало роста любым форменным элементам крови и способна к длительному самоподдержанию.

Каждая стволовая кроветворная клетка при своем делении превращается в две дочерние клетки, одна из которых включается в процесс пролиферации, а вторая идет на продолжение класса полипотентных клеток. Дифференцировка стволовой кроветворной клетки происходит под влиянием гуморальных факторов.

В результате развития и дифференцировки разные клетки приобретают морфологические и функциональные особенности.

Гемоцитопоэз (гемопоэз, кроветворение) — совокупность процессов преобразования стволовых гемопоэтических клеток в разные типы зрелых клеток крови (эритроцитов — эритропоэз, лейкоцитов — лейкопоэз и тромбоцитов — тромбоцитопоэз), обеспечивающих их естественную убыль в организме.

Полипотентные стволовые гемопоэтические клетки находятся в красном костном мозге и способны к самообновлению. Они могут также циркулировать в крови вне органов кроветворения.

ПСГК костного мозга при обычной дифференциации дают начало всем типам зрелых клеток крови — эритроцитам, тромбоцитам, базофилам, эозинофилам, нейтрофилам, моноцитам, В- и Т-лимфоцитам.

Для поддержания клеточного состава крови на должном уровне в организме человека ежесуточно образуется в среднем 2,00 • 1011 эритроцитов, 0,45 • 1011 нейтрофилов, 0,01 • 1011 моноцитов, 1,75 • 1011 тромбоцитов.

У здоровых людей эти показатели достаточно стабильны, хотя в условиях повышенной потребности (адаптация к высокогорью, острая кровопотеря, инфекция) процессы созревания костномозговых предшественников ускоряются. Высокая пролиферативная активность стволовых гемопоэтических клеток перекрывается физиологической гибелью (апоптозом) их избыточного потомства (в костном мозге, селезенке или других органах), а в случае необходимости и их самих.

Подсчитано, что каждый день в организме человека теряется (2-5) • 1011 клеток крови, которые замешаются на равное количество новых.

Чтобы удовлетворить эту огромную постоянную потребность организма в новых клетках, гемоцитопоэз не прерывается в течение всей жизни.

В среднем у человека за 70 лет жизни (при массе тела 70 кг) образуется: эритроцитов — 460 кг, гранулоцитов и моноцитов — 5400 кг, тромбоцитов — 40 кг, лимфоцитов — 275 кг. Поэтому кроветворные ткани рассматриваются как одни из наиболее митотически активных.

Современные представления о гемоцитопоэзе базируются на теории стволовой клетки, основы которой были заложены русским гематологом А.А. Максимовым в начале XX в.

Согласно данной теории, все форменные элементы крови происходят из единой (первичной) полипотентной стволовой гемопоэтической (кроветворной) клетки (ПСГК).

Эти клетки способны к длительному самообновлению и в результате дифференциации могут дать начало любому ростку форменных элементов крови  и одновременно сохранять их жизнеспособность и свойства.

Стволовые клетки (СК) являются уникальными клетками, способными к самообновлению и дифференцировке не только в клетки крови, но и в клетки других тканей.

По происхождению и источнику образования и выделения СК разделяют на три группы: эмбриональные (СК эмбриона и тканей плода); региональные, или соматические (СК взрослого организма); индуцированные (СК, полученные в результате репрограммирования зрелых соматических клеток). По способности к дифференцировке выделяют тоти-, плюри-, мульти- и унипотентные СК.

Тотипотентная СК (зигота) воспроизводит все органы эмбриона и структуры, необходимые для его развития (плаценту и пуповину). Плюрипотентная СК может быть источником клеток, производных любого из трех зародышевых листков. Мульти (поли) потентная СК способна образовывать специализированные клетки нескольких типов (например клетки крови, клетки печени).

Унипотентная СК в обычных условиях дифференцируется в специализированные клетки определенного типа. Эмбриональные СК являются плюрипотентными, а региональные — полипотентными или унипотентными. Частота встречаемости ПСГК составляет в среднем 1:10 000 клеток в красном костном мозге и 1:100 000 клеток в периферической крови.

Плюрипотентные СК могут быть получены в результате репрограммирования соматических клеток различного типа: фибробластов, кератиноцитов, меланоцитов, лейкоцитов, β-клеток поджелудочной железы и другие, с участием факторов транскрипции генов или микроРНК.

Все СК обладают рядом общих свойств. Во-первых, они недифференцированы и не располагают структурными компонентами для выполнения специализированных функций. Во- вторых, они способны к пролиферации с образованием большого числа (десятков и сотен тысяч) клеток.

В-третьих, они способны к дифференцировке, т.е. процессу специализации и образованию зрелых клеток (например, эритроцитов, лейкоцитов и тромбоцитов).

В-четвертых, они способны к асимметричному делению, когда из каждой СК образуются две дочерние, одна из которых идентична родительской и остается стволовой (свойство самообновления СК), а другая дифференцируется в специализированные клетки.

Наконец, в-пятых, СК могут мигрировать в очаги повреждения и дифференцироваться в зрелые формы поврежденных клеток, способствуя регенерации тканей.

Различают два периода гемоцитопоэза: эмбриональный — у эмбриона и плода и постнатальный — с момента рождения и до конца жизни. Эмбриональное кроветворение начинается в желточном мешке, затем вне его в прекардиальной мезенхиме, с 6-недельного возраста оно перемещается в печень, а с 12 — 18-недельного возраста — в селезенку и красный костный мозг.

С 10-недельного возраста начинается образование Т-лимфоцитов в тимусе. С момента рождения главным органом гемоцитопоэза постепенно становится красный костный мозг. Очаги кроветворения имеются у взрослого человека в 206 костях скелета (грудине, ребрах, позвонках, эпифизах трубчатых костей и др.).

В красном костном мозге происходит самообновление ПСГК и образование из них миелоидной стволовой клетки, называемой также колониеобразующей единицей гранулоцитов, эритроцитов, моноцитов, мегакариоцитов (КОЕ-ГЭММ); лимфоидную стволовую клетку.

Мислоидная полиолигопотентная стволовая клетка (КОЕ-ГЭММ) может дифференцироваться: в монопотентные коммитированные клетки — предшественницы эритроцитов, называемые также бурстобразующей единицей (БОЕ-Э), мегакариоцитов (КОЕ- Мгкц); в полиолигопотентные коммитированные клетки гранулоцитов-моноцитов (КОЕ-ГМ), дифференцирующиеся в монопотентные предшественницы гранулоцитов (базофилы, нейтрофилы, эозинофилы) (КОЕ-Г), и предшественницы моноцитов (КОЕ-М). Лимфоидная стволовая клетка является предшественницей Т- и В- лимфоцитов.

В красном костном мозге из перечисленных колониеобразующих клеток через ряд промежуточных стадий образуются регикулоциты (предшественники эритроцитов), мегакариоциты (от которых «отшнуровываются» тромбоцит!,i), гранулоциты (нейтрофилы, эозинофилы, базофилы), моноциты и В-лимфоциты.

В тимусе, селезенке, лимфатических узлах и лимфоидной ткани, ассоциированной с кишечником (миндалины, аденоиды, пейеровы бляшки) происходит образование и дифференцирование Т-лимфоцитов и плазматических клеток из В-лимфоцитов.

В селезенке также идут процессы захвата и разрушения клеток крови (прежде всего эритроцитов и тромбоцитов) и их фрагментов.

В красном костном мозге человека гемоцитопоэз может происходить только в условиях нормального гемоцитопоэзиндуцирующего микроокружения (ГИМ). В формировании ГИМ принимают участие различные клеточные элементы, входящие в состав стромы и паренхимы костного мозга.

ГИМ формируют Т-лимфоциты, макрофаги, фибробласты, адипоциты, эндотелиоциты сосудов микроциркуляторного русла, компоненты экстрацеллюлярного матрикса и нервные волокна.

Элементы ГИМ осуществляют контроль за процессами кроветворения как с помощью продуцируемых ими цитокинов, факторов роста, так и благодаря непосредственным контактам с гемопоэтическими клетками.

Структуры ГИМ фиксируют стволовые клетки и другие клетки-предшественницы в определенных участках кроветворной ткани, передают им регуляторные сигналы, участвуют в их метаболическом обеспечении.

Гемоцитопоэз контролируется сложными механизмами, которые могут поддерживать его относительно постоянным, ускорять или тормозить, угнетая пролиферацию и дифферен- цировку клеток вплоть до инициирования апоптоза коммитированных клеток-предшественниц и даже отдельных ПСГК.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *